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Abstract: The current COronaVIrus Disease 19 (COVID-19) pandemic caused by SARS-CoV-2 infec-
tion is enormously affecting the worldwide health and economy. In the wait for an effective global
immunization, the development of a specific therapeutic protocol to treat COVID-19 patients is
clearly necessary as a short-term solution of the problem. Drug repurposing and herbal medicine
represent two of the most explored strategies for an anti-COVID-19 drug discovery. Clove (Syzygium
aromaticum L.) is a well-known culinary spice that has been used for centuries in folk medicine in
many disorders. Interestingly, traditional medicines have used clove since ancient times to treat
respiratory ailments, whilst clove ingredients show antiviral and anti-inflammatory properties. Other
interesting features are the clove antithrombotic, immunostimulatory, and antibacterial effects. Thus,
in this review, we discuss the potential role of clove in the frame of anti-COVID-19 therapy, focusing
on the antiviral, anti-inflammatory, and antithrombotic effects of clove and its molecular constituents
described in the scientific literature.

Keywords: coronavirus infections; pandemics; natural compounds; clove; Syzygium aromaticum;
eugenol; eugeniin; SARS-CoV-2; COVID-19; phytochemicals; herbal medicine

1. Introduction

Coronaviridae is a family of enveloped RNA viruses known as Coronaviruses (CoVs)
that provoke infections in animals and humans [1–6]. Presently, seven human coron-
aviruses (HCoVs), commonly considered of zoonotic origin, are described in the scientific
literature [7] that cause infections mainly associated with respiratory symptoms [8–10].
More in detail, HCoV-229E, HCoV-NL63, HCoV-OC43, and HCoV-HKU1 are “common
cold” coronaviruses causing seasonal, usually mild, respiratory diseases [11,12]. Although,
in most cases, these HCoVs do not lead to severe clinical symptoms, HCoV-NL63 and
HCoV-HKU1 infections can provoke bronchiolitis and croup [13,14], whilst CoV 229E and
OC43 can provoke pneumonia [15,16]. Nonetheless, three highly pathogenic HCoVs have
emerged in the last two decades, i.e., Middle East Respiratory Syndrome (MERS)-CoV, Se-
vere Acute Respiratory Syndrome (SARS)-CoV-1, and SARS-CoV-2 [17–19], which can lead
to life-threatening pathologic events associated with the recent MERS, SARS, and the cur-
rent COronaVIrus Disease 19 (COVID-19), which is causing enormous problems globally in
both sanitary and socioeconomic terms [20]. SARS-CoV-1 and MERS-CoV are more lethal
than SARS-CoV-2, but this latter is more transmissible, explaining the current pandemic
status of COVID-19 [21]. In the first step of coronavirus infection, a specific molecular
recognition between the virus particle, through the virus spike (S) protein, and the host
cell takes place, involving different HCoV-specific receptors [22–26] that were identified
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for several CoVs and are considered one of the primary targets for anti-CoV biomedical
strategies together with the SARS-CoV-2 main protease (Mpro) [27,28]. The receptors for the
“common cold” HCoVs are human aminopeptidase N (APN), associated with the infection
from HCoV-229E, and 9-O-acetylated sialic acid (9-O-Ac-Sia), used by HCoV-OC43 and
HCoV-HKU1. On the other hand, the receptor for HCoV-NL63, i.e., angiotensin-converting
enzyme 2 (ACE2), is also common to the more pathogenic SARS-CoV-1 and SARS-CoV-2,
whilst dipeptidyl peptidase 4 (DPP4) was associated with MERS-CoV [29,30]. Once intra-
cellular, all HCoVs replicate their RNA with the consequent expression of the viral proteins
needed for the production of new viral particles inside the infected cell [31]. As anticipated,
four out of the seven HCoVs are associated with usually mild upper respiratory infections,
whilst MERS-CoV and SARS-CoV-1 and -2 can cause lethal events [32]. This latter, first
emerging in China at the end of 2019 [32], can lead to severe pneumonia and, being eas-
ily transmissible, has spread worldwide rapidly, leading the World Health Organization
(WHO) to declare COVID-19 a pandemic [33]. Currently, there are more than two million
deaths (2,566,793, as found in Worldometers.info [34] accessed on 3 March 2021) worldwide
due to COVID-19, with enormous consequences for the public health and the economy
worldwide [35–37]. While the whole world is fighting against COVID19 and awaits an
effective mass immunization, the scientific community is devoting immense efforts toward
developing specific therapies for the treatment of SARS-CoV-2 infection. Moreover, since
inflammatory cytokine storms together with immune system impairment are commonly
observed in patients with severe COVID-19, several research studies have highlighted the
advantages of dual therapies with antiviral and anti-inflammatory benefits [38,39]. Due
to the urgent need for such a pharmacological treatment, drug repurposing [40–42] and
herbal medicine are two of the most considered anti-COVID-19 approaches [43–47]. In fact,
several plants such as mulberry, tea, and Dragon’s Blood tree are known as remedies to
treat respiratory ailments and for their anti-inflammatory and antithrombotic properties,
which are useful aspects in the fight against COVID-19 [48–52].

2. Clove (Syzygium aromaticum L.) in Herbal Medicine and Its Active Constituents

Syzygium aromaticum L., also known as Eugenia caryophyllata L. [53], is an evergreen
tree with sanguine flowers belonging to the family Myrtaceae that grows in tropical
climates and has been widely used in Ayurveda and Chinese traditional medicines for over
2000 years. Arabic traders brought it to the Western world in the fourth century A.D., and
in medieval Europe, it became very popular as a medicinal spice [54].

Indigenous to the Moluccas, this tree is cultivated in several countries of Asia and
Africa, including India, Indonesia, Madagascar, Malaysia, Sri Lanka, and Zanzibar [55].
The dried flower bud of this plant is indicated by the English name “clove”, derived from
the Latin word “clavus” (nail), as the shape resembles that of a small-sized nail. Cloves
are currently used in three different forms, as whole dried buds (commonly referred to
as “cloves”), ground spice, and essential oil. Though all forms share similar biomedically-
relevant properties, they differ in the degree of potency, with the oil showing the highest
potency and, thus, often being diluted with almond oil. Whole cloves, containing a good
amount of oil in their interiors, are still endowed with a medium potency, whilst ground
cloves are the least potent form, as, in this form, the spice generally loses most of the
essential oil [54].

Cloves have long been used in both traditional medicine and for culinary purposes and
serve to produce an essential oil known since ancient times in food flavorings, traditional
medicine, and perfume production [53]. Even though cloves are mostly used as a nutritional
spice for food in the Western world, in the past, they have constituted a remedy for a variety
of health concerns, with the clove anesthetic (due to eugenol), stimulating, antimicrobial,
antifungal, antiviral, and antiseptic properties having been known for centuries [54].

On the other hand, the clove essential oil finds applications in dental care, including the
treatment of gum infections [56], burns [57], and respiratory and digestive disorders [56,58].
The previous literature studies also evidenced other remarkable properties, such as an-
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tiangiogenic [53,59], anticancer [53,56,58], antioxidant [60], anti-inflammatory [61], and
antimutagenic activities [62].

The American Food and Drug Administration (FDA) agency has confirmed the safety
of clove buds, clove oil, and some clove ingredients as a food supplement [63], while the
WHO has established the acceptable daily uptake of cloves in humans at 2.5 mg/kg body
weight [64].

The spice contains a good amount of minerals like magnesium, manganese, potas-
sium, iron, and selenium [54]. Among the others, potassium as an important electrolyte
of the cell and body fluids has a key role in the heart rate and blood pressure control [65],
while manganese is used by the body as a cofactor for the antioxidant enzyme superox-
ide dismutase [66,67]. Additionally, cloves are a good source of beta carotene vitamin
B1, vitamin B6, vitamin C, vitamin K, riboflavin, and vitamin A, used by the body for
maintaining healthy mucus membranes and skin [68]. Noteworthy, vitamin C sustains a re-
sistance against infectious agents [69] and is used by cells to scavenge harmful oxygen-free
radicals [70].

Several research studies have been carried out to identify the main clove phyto-
chemicals [71–77]. Dried clove buds contain ~20% essential oil, which is rich in eugenol,
accounting for 70–90%. The other main phytochemicals isolated from clove essential oil
include eugenyl acetate, β-caryophyllene, and several sesquiterpenes [53,78], including α-
cubebene, α-copaene, and γ- and δ-cadinene [79]. Crategolic acid, vanillin, gallotannic acid,
methyl salicylate, eugeniin, rhamnetin, kaempferol, eugenitin, oleanolic acid, methyl amyl
ketone, methyl salicylate, α- and β-humulene, benzaldehyde, chavicol, and β-ylangene are
present in lesser amounts [74]. In particular, eugenol and minor constituents like methyl
salicylate and methyl amyl ketone are responsible for the characteristic pleasant aroma of
cloves. The extraction of phytochemicals, achievable with high efficiency by presoaking
and the liquid ammonia treatment of plant materials [80], in the case of cloves was realized
with different operating conditions, including using supercritical CO2 [81].

2.1. Clove as Herbal Remedy for Respiratory Ailments

Traditional medicine uses cloves as respiratory aids, and in particular, the spice is
one of the ingredients of teas used in tropical Asia to facilitate coughing [54]. Moreover,
an aromatherapy procedure consisting of breathing in the aroma released from hot clove
tea is another common way to use cloves for respiratory disorders like coughs, colds,
asthma, bronchitis, and sinusitis [54]. Moreover, it is customary in Asia to chew cloves for
treating soreness of throat and inflammation of the pharynx [54]. Chewing cloves after
their thermal treatment is reported to bring relief from severe coughing [54]. Clove oil
acts as an expectorant for treating respiratory disorders, including colds, bronchitis, cough,
asthma, and upper-respiratory conditions [74]. In mixtures with honey, it helps in the case
of chronic coughs and is mentioned to be specifically useful in the case of shortness of
breath [82].

2.2. Anti-Inflammatory, Immunostimulatory, and Antithrombotic Properties of Cloves

Clove essential oil, often used in aromatherapy to treat inflammatory diseases, in-
cluding arthritis and rheumatism [54], was found to have anti-inflammatory effects in
animal models at doses of 0.05 and 0.20 mL/kg [83]. Interestingly, at this dosage, the anti-
inflammatory effect of clove oil matches that of anti-inflammatory drugs like etodolac and
indomethacin administered at 0.025 and 0.1, and 0.05 and 0.2 mL/kg doses, respectively [83].
The ethanol extracts of clove buds were also tested for anti-inflammatory effects at three
doses (50, 100, and 200 mg/kg) in mice and Wistar rats using acetic acid-induced ab-
dominal contractions in the former and formalin-induced hind paw edema in the latter
animal models. The extract with an LD50 (50% Lethal Dose) of 565.7 mg/kg produced
significant effects at all three doses, supporting the use of the clove extract in inflammatory
conditions [84].
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From a molecular point of view, clove buds contain flavonoids like β-caryophyllene,
kaempferol, and rhamnetin, which contribute to clove anti-inflammatory properties [85–89].
In experimental animal models, eugenol (at 200 and 400 mg/kg doses) was shown to
reduce the volume of pleural exudates without changing the total count of blood leuko-
cytes, which indicates the anti-inflammatory activity of this molecule [90]. Eugenol is
believed to regulate the cellular inflammatory cascades, including the NF-κB (nuclear fac-
tor kappa-light-chain-enhancer of activated B cells) and ERK (extracellular-signal-regulated
kinase)/MAPK (mitogen-activated protein kinase) pathways, and the release of proin-
flammatory interleukins [82]. In other studies, LPS (lipopolysaccharide)-induced lung
inflammation was relieved by the treatment with both whole clove aqueous extract and
eugenol through a reduction of TNF-α (tumor necrosis factor alpha) and inhibition of
NF-κB signaling, also with improvement in the alveolar damage [91,92]. Remarkably, clove
aqueous extract showed protective effects on an animal model of pyelonephritis [93], a
kidney inflammation reported in COVID-19 patients [94].

Traditional medicine attributes to clove the property of boosting the human immune
system, improving disease resistance [54]. In experimental studies on animal models, clove
oil improved the total white blood cell count and enhanced the delayed-type hypersensi-
tivity response. Noteworthy, a dose-dependent restoration of both humoral and cellular
immune responses was observed in cyclophosphamide-immunosuppressed mice treated
with clove essential oil. The immunostimulatory activity was associated with improve-
ment in the cell- and humor-mediated immune response mechanisms determined by clove
essential oil [95].

Clove is mentioned to improve the blood supply to both the brain and the heart and
is used as a tonic for the cardiovascular system [82]. Moreover, clove oil was shown to
inhibit the platelet aggregation induced by the platelet-activating factor, arachidonic acid,
and collagen, with a higher activity observed in the first two systems than the latter [74].
In vivo experiments carried out on rabbits showed that clove oil at 50–100 mg/kg doses
afforded total protection against the platelet-activating factor and good (70%) protection
against arachidonic acid-induced shock due to pulmonary platelet thrombosis [74]. Clove
oil also inhibited thromboxane-A2 and 12-hydroxyeicosatetraenoic acid production by
human platelets treated with C-14 arachidonic acid [96]. Antithrombotic and antiplatelet
aggregation effects were also studied on clove extracts by ex vivo methods measuring the
fibrinolytic activity and the inhibitory effect on thrombin-induced platelet aggregation [97].
The extracts showed remarkable fibrinolytic activity and inhibitory effects on platelet
aggregation, suggesting clove anti-atherosclerotic potential [97].

Owing to the molecular basis for the clove antithrombotic effects, the main clove
oil constituent, eugenol, has shown activity as a platelet inhibitor, thus preventing blood
clots [87]. More in detail, the same compound was shown in vitro to inhibit arachidonic
acid-induced platelet aggregation, as well prostaglandin biosynthesis and the forma-
tion of thromboxane B2 [98]. Together with acetyl eugenol, it was more effective than
acetylsalicylic acid in inhibiting the platelet aggregation induced by arachidonic acid,
adrenaline, and collagen, showing, in the first case, an anti-aggregation activity compara-
ble to indomethacin [99]. Aside from the above-mentioned antithrombotic properties of
eugenol, these were also revealed for rhamnetin, gallic acid, kaempferol, myricetin, and
β-caryophyllene (Figure 1), as well for two polysaccharides isolated from the clove buds
by chromatographic methods [100].
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Figure 1. Clove, from culinary use to herbal medicine: (a) edible clove buds (photo taken by Giovanni N.
Roviello). (b) Structure representation of some phytochemicals extracted from Syzygium aromaticum endowed with
anti-inflammatory properties.

Both polysaccharides presented a backbone of type I rhamnogalacturonan and the
side chain made of arabinan. However, one mainly composed of the sugars Ara, Gal, Glc,
and Rha was endowed with a relatively high molecular weight (MW ~103,000), and the
other mainly composed of Rha, Gal, GalA, and Ara showed a lower molecular weight (MW
~34,000). The high molecular weight polysaccharide showed antithrombotic activity with a
plasma clotting time of 145 s in the activated partial thromboplastin time (APTT) assays,
while the other displayed a lower activity with a plasma clotting time of 90 s in the APTT
assay [100].

3. Clove Antiviral Properties

The whole clove antiviral activity was tested by Tragoolpua and Jatisatienr [101],
who assayed an ethanol extract obtained from the plant flower buds for its anti-herpes
simplex virus (HSV) properties. By a plaque reduction assay, the authors demonstrated
that HSV was inhibited by the clove extract. Interestingly, the clove extract showed a
direct inactivating action on the particles of the standard HSV strains. Moreover, the
total HSV virus yield at 30 h declined after the treatment with the extract [101]. Another
study performed on the methanol extracts of cloves showed a high in vitro activity of
the extract in inhibiting the HCV protease, with a ≥90% protease inhibition at a dose of
100 µg/mL [102].

Antiviral Properties of Clove Phytochemicals

Eugenol (4-allyl-2-methoxyphenol; Figure 2), being the major constituent of cloves,
was investigated for its antiviral activity by several research groups. The above-mentioned
Tragoolpua and Jatisatienr [101] used pure eugenol as the reference compound in their anti-
HSV studies and found that it exerted a higher antiviral activity than the ethanol extracts
of whole clove buds. Similar findings were obtained by Benencia and Courreges [103],
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who reported the eugenol inhibition of HSV-1 and HSV-2 replication with inhibitory
concentration 50% (IC50) values of 25.6 µg/mL and 16.2 µg/mL, respectively. In the same
study, eugenol was virucidal, whilst no compound-associated cytotoxicity was revealed at
the concentrations tested [103]. Eugenol also showed antiviral activity against the influenza
A virus (IAV), being able to inhibit IAV replication [104]. Finally, it was also found active
as an inhibitor of the Ebola Virus in vitro [105].
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Other clove phytochemicals were investigated for their antiviral properties, and
among them, eugeniin (Figure 2), isolated from the herbal extracts of cloves and, also, from
Geum japonicum, showed anti-HSV activity at a 5-µg/mL concentration [106]. The HSV
inhibitory activity of eugeniin was due to the inhibition of the viral DNA synthesis, as it
acted as a selective inhibitor of the DNA polymerases of HSV-1 and HSV-2 [106].

Eugeniin was also found to act as a potent inhibitor of the protease of Dengue virus
(DENV), which causes infections in tropical and subtropical regions of the world for which
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there are still no specific antiviral treatments available [107]. The IC50 values of eugeniin
against the proteases of DENV serotype-2 and -3 were 94.7 nM and 7.5 µM, respectively.
Thus, in consideration of the importance of DENV protease for the viral replication cycle,
eugeniin was proposed as a promising drug in the context of anti-DENV therapeutics
development [107]. The other investigated DENV protease inhibitors were isobiflorin and
biflorin (Figure 2), even though their inhibitory activity was weaker than eugeniin [107].
The atomic-level details of the binding of these three clove phytochemicals to the viral
protease were obtained by computational docking and saturation transfer difference (STD)
NMR spectroscopy, which showed that the molecular recognition at the active site of the
DENV protease involved networks of hydrophobic contacts and hydrogen bonds [107].

4. Clove in the Fight against COVID-19

The traditional therapeutic use of clove in respiratory disorders and its activity against
different types of viruses, alongside its anti-inflammatory, immunostimulatory, and an-
tithrombotic properties, are all attractive features highlighting its potential in the fight
against the COVID-19 disease.

Clove is one of the medicinal plants currently employed to prevent and control the
SARS-CoV-2-associated disease, together with Eucalyptus globulus, Cymbopogon citratus,
Zingiber officinale, and other plants endowed with the advantage of being inexpensive and
abundantly available around the globe [108]. More in detail, a protocol for the prevention
and treatment of COVID-19 using cloves, as medicinal plant, was described by Kanyinda,
J.N. M., who reported a proven effect for the treatment provided that it was carried out in
the early stages of the disease [108]. The protocol included the preparation of a decoction in
which cloves are boiled in water with other plant materials for 15 min. The released volatile
active principles are then inhaled by patients for five minutes. The same protocol also
included a drinkable decoction obtained with cloves and other plant materials [108]. Note-
worthy, surveys have been conducted in India and Morocco, countries with low pandemic
impacts [109,110], to identify the various home remedies used by the local populations
during COVID-19, which have included many spices and herbs. Interestingly, more than
93% of the interviewed Indian people believed that spices are helpful in curing COVID-19
or other viral infections and can help in boosting the immunity. Cloves are mentioned as
one of the most frequently used spices and herbs during the current COVID-19 pandemic
in the areas under investigation, together with other plants like cinnamon, ginger, black
pepper, garlic, neem, and basil [111]. Cloves are also being used in Morocco by herbalists
from Salé Prefecture for the prevention and treatment of COVID-19 [112]. From a molecular
point of view, some computational studies recommended phytocompounds extracted from
cloves as potent anti-COVID-19 drugs [113,114], and one of them, kaempferol, was shown
in silico to bind the substrate binding pocket of the main protease of SARS-CoV-2 with
high affinity interacting with the active site residues such as Cys145 and His41 through
hydrophobic interactions and hydrogen bonding, suggesting that natural compounds such
as clove flavonoids could act as novel inhibitors of SARS-CoV-2 [115]. Molecular docking
studies have also shown high affinities of clove compounds bicornin (−9.2 kcal/mol) and
biflorin (−8.5 kcal/mol) for Mpro, suggesting their potential inhibitory activity [115].

5. Conclusions

The therapeutic use of cloves in traditional medicine to treat respiratory ailments
and its experimentally proven activity against different types of viruses, as well its anti-
inflammatory, immunostimulatory, and antithrombotic properties, all concur to compose
a picture of the potential importance of cloves and their phytochemical constituents in
the fight against the COVID-19 disease. Aside from the above-mentioned features, clove
essential oil has shown remarkable antibacterial effects against the infections of immuno-
suppressed hospitalized patients [78], suggesting its utility to also prevent secondary bac-
terial infections in COVID-19 patients [82]. In conclusion, cloves, a precious spice largely
used in countries where the impact of the novel coronavirus is lower than the Western
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world, are endowed with medicinal properties considered relevant in the prevention and
therapy of COVID-19. Future clinical data on the activity of cloves and their constituents
on COVID-19 patients and more molecular insights on the specific clove phytochemical
interactions with SARS-CoV-2 protein targets are clearly desirable in order to realize the
effective therapeutic protocols and design new drugs based on clove phytochemicals with
optimized characteristics.
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